#### From Chaos To Order - Delivering e-Business Integration Solutions

# Case Study: Making the Business Case for a Transition to SOA

Max Dolgicer Managing Director mdolgicer@isg-inc.com Gerhard Bayer Senior Consultant gbayer@isg-inc.com

International Systems Group (ISG), Inc. 250 West 57 Street, Suite 2532 New York, NY, 10107 Tel: 212 489 0400 Fax: 212 489 1125 isg@isg-inc.com http://www.isg-inc.com





# International Systems Group (ISG), Inc.

 Founded on the premises of Middleware technologies 16 years ago in New York City

### Three practice areas

- IT Strategy and SOA Architecture practice
  - Definition of SOA
  - SOA Assessment and SOA Compliance Verification
  - ▲ CIO Summits / IT and Business Objectives Alignment
- SOA Modeling, Design and Implementation practice
  - Development of applications and infrastructure (i.e. foundation) services
  - ▲ EAI solutions for A2A and B2B integration
- Education and Training practice
  - Public and on-site training
  - Out-of-the-box and customized classes
  - Defining and Implementing Service Oriented Architectures (SOA) From Theory to Practice
  - Implementing Service Oriented Applications An Introduction to Service Oriented Analysis, Modeling and Design



### International Systems Group (ISG), Inc.

- ISG professionals average 15+ years of experience in development and integration of distributed systems
  - Real hands-on experience spans end-user corporations and software vendors



# Agenda

- Business and technical objectives of the transition to SOA
  - How business objectives are addressed by IT
- How SOA is being implemented at Carey
  - Service layers
  - Architecture overview
  - Service reuse for B2B
- Facilitating alignment of IT with new business strategies
  - Service reusability enables business agility
- Return on investment (ROI) calculation





# Case Study: Chauffeured Services Company

- Carey provides premium limousine services
- The clientele of Carey International comprises
  - Individual customers including many celebrities
  - Corporate clients
  - Travel agencies
- Carey provides services to its customers via
  - Carey owned subsidiaries
  - Affiliates
  - Licensees and farm outs
- In addition, there are external sources of business information
  - E.g. Global Distribution Systems (GDSs)





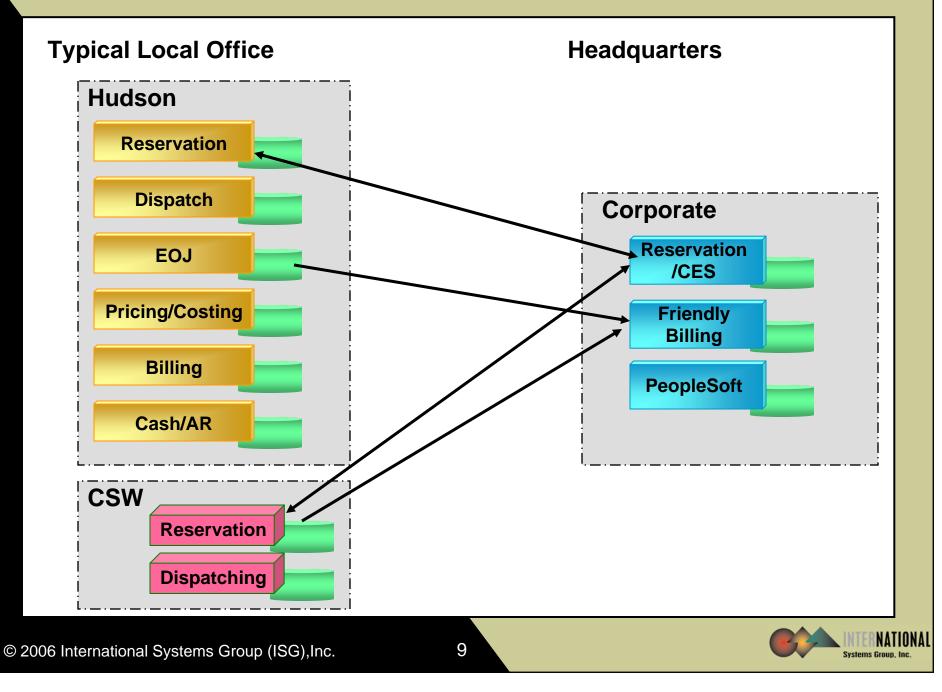
# **Evolution Of Carey IT**

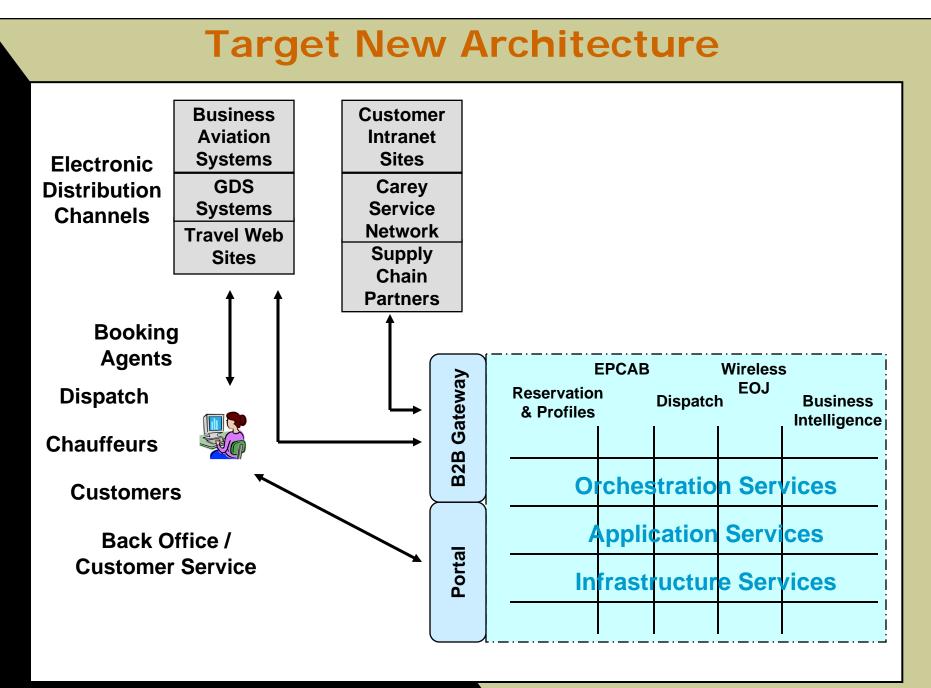
- IT at Carey subsidiaries consists of locally installed and managed applications
  - Legacy software (CSW)
    - Manages reservations, dispatches and end-of-job functions at local subsidiaries and franchises
  - Hudson software third party software, same as CSW but includes also billing functions
  - Odyssey third party software
- IT at Carey Corporate Headquarters consist of
  - CESRes home-grown, distributed applications
    - Provides reservation, profiles and customer service functions
    - ▲ Centrally deployed in the data center
    - Now WebSphere J2EE based
      - Originally developed as Java/Corba and ported to WebSphere
    - ▲ Supports multiple inbound channels
      - <u>www.ecarey.com</u>
      - Call center where rich client (i.e. Swing) is used



# **Evolution Of Carey IT**

- "Friendly Billing"
  - Provides generation of invoices
  - Centrally deployed
  - ▲ Legacy, 4GL (i.e. Magic based) system
- PeopleSoft to perform all the AR/AP functions
  - Centrally deployed





# **Carey Business Requirements For IT**

- This "accidental architecture" has hampered the business
  - About 80% of reservations are made at one of the local offices
    - Creates a huge integration problem and a lot of manual labor especially when it comes to handling exceptions
  - Only about 20% reservations are made at the call center or via www.ecarey.com
- The goals:
  - Support all of the core business functionality from one (logically) central location
  - Support the expansion of service offerings
  - Support the acquisition of other companies



### **Old "Accidental" Architecture**







### **Important Book**

 Service Oriented Architecture Concepts, Technology, and Design by Thomas ERL ISBN 0-13-185858-0



| Business Objectives & IT Approach                                                                                                      |                                                                                                                                                                                                                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Carey Business Objectives                                                                                                              | Addressed by IT                                                                                                                                                                                                                                             |  |  |  |  |
| Revenue Enhancement<br>New service offerings<br>Cross-selling<br>Acquisitions                                                          | <ul> <li>Better leverage of the IT<br/>infrastructure and processes</li> <li>Increased extensibility and<br/>adaptability of the core applications</li> <li>Avoid one-off integration solutions</li> </ul>                                                  |  |  |  |  |
| Customer Service Enrichment<br>Single view if the customer<br>Better customer self-service<br>Improved business process<br>consistency | <ul> <li>Creation of a centralized reservation<br/>system with customer profiles</li> <li>SOA enables efficient integration of a<br/>portal with back office systems</li> <li>Centralized SOA leads to improved<br/>business process consistency</li> </ul> |  |  |  |  |
| Allow travel agents to book with Carey using major GDS systems.                                                                        | Automated B2B integration with<br>major GDSs and other types of<br>business partners.                                                                                                                                                                       |  |  |  |  |
| Total cost of ownership (TOC)                                                                                                          | Service reuse, decreased complexity                                                                                                                                                                                                                         |  |  |  |  |
| Risk management                                                                                                                        | Core services (foundation and some application) are implemented by highly skilled designers/developers                                                                                                                                                      |  |  |  |  |
| 2006 International Systems Group (ISG),Inc.                                                                                            | 2 INTERNATI                                                                                                                                                                                                                                                 |  |  |  |  |

### **General Objectives Of The Carey SOA**

- The main objectives of the Service Oriented Architecture at Carey include:
  - Contain cost
    - Maximize the efficiency of services by eliminating redundancies and increasing reusability
    - ▲ Reduce the number of applications from 35 to 15
    - Decrease in software license cost & maintenance complexity
  - Create a comprehensive "big picture" view of the enterprise systems
    - Old services can be migrated
    - New services can be created without significant risk or investment of additional resources
  - Introduces a high level of accountability, trace-ability, and accuracy to the application development process



# **Architecture Scope**

- The overall goal is to define a central system that delivers full business functionality to all Carey sites, but that is maintained in a single location.
- The scope of the architecture includes
  - Consolidation of the reservation system
    - ▲ *Migrate* to the new J2EE environment
    - ▲ *Encapsulate* existing services
    - ▲ *Surround* by new services
    - ▲ *Replace* legacy implementation
    - Expand the reach: more and more reservations will be handled by the central reservation system
  - Really "surround and retire" as oppose to "rip and replace" or "leave and layer" strategy



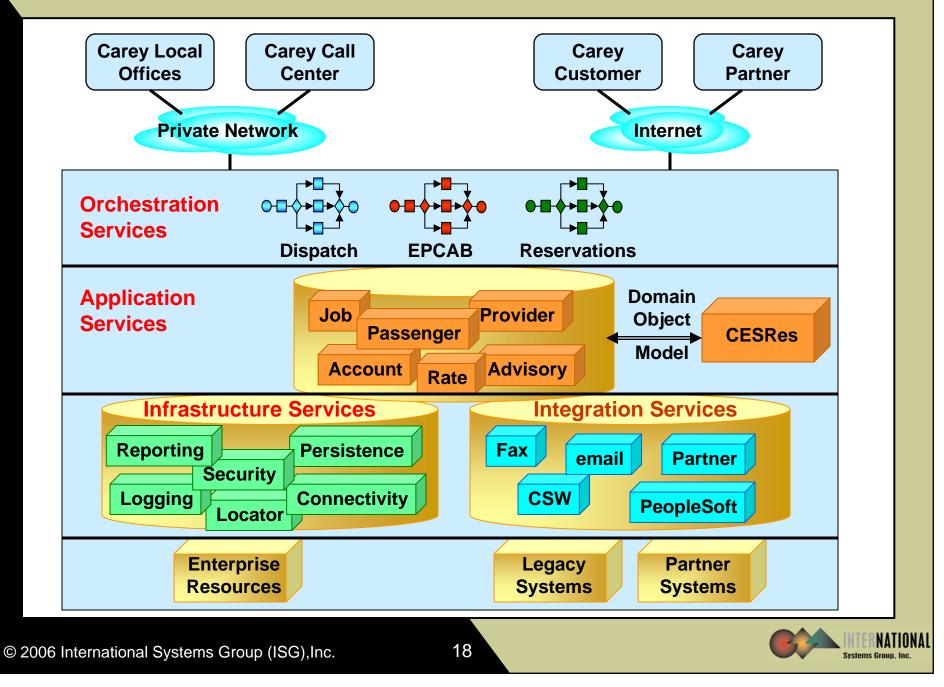
# **Architecture Scope**

- The scope of the architecture includes
  - Replacement of the billing system (i.e. EPCAB)
    - Current: central legacy 4GL system (i.e. Friendly Billing)
    - Some subsidiaries manage billing locally, others use a manual process to transfer billing to the central system
    - The new system will handle pricing, costing, and adjustments centrally
      - End-Of-Job information will be sent from subsidiaries to the central system
      - Drivers can send adjustments including expenses directly from their J2ME enabled handheld devices
  - Replacement of the local dispatching applications by a new central dispatching system
    - ▲ SLA for this application was a big challenge
  - Common infrastructure (i.e. foundation) and common application services



### **The Layered Services Architecture**

- The SOA has been developed following best practice guidelines for service analysis, modeling, and design
- Key architectural principles that were applied are the separation of concerns and design for reusability
  - Separation of concerns leads to a separation of service functionality into layers
  - Specifically, the SOA has been delineated into the following service layers:
    - Orchestration Services layer
    - Application Services layer
    - ▲ Infrastructure (i.e. Foundation) Services layer

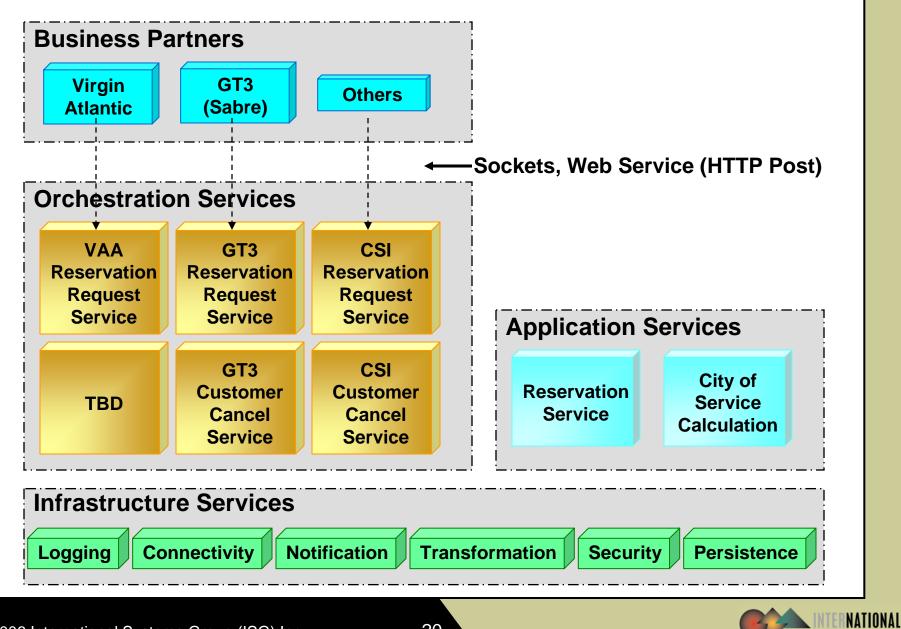



### **The Layered Services Architecture**

- The breakdown into distinct layers facilitates decoupling of the services
  - One of the most important characteristics of a welldefined SOA
- Reusability is achieved by designing key application services and infrastructure services that are autonomous and are agnostic of the business process context within which they are executed
  - For example, the services are being utilized by different presentation layers
    - ▲ Web interface (customer portal)
    - Thick client (Swing interface for internal users)
    - B2B channels (business partners)



#### **Architecture Overview**



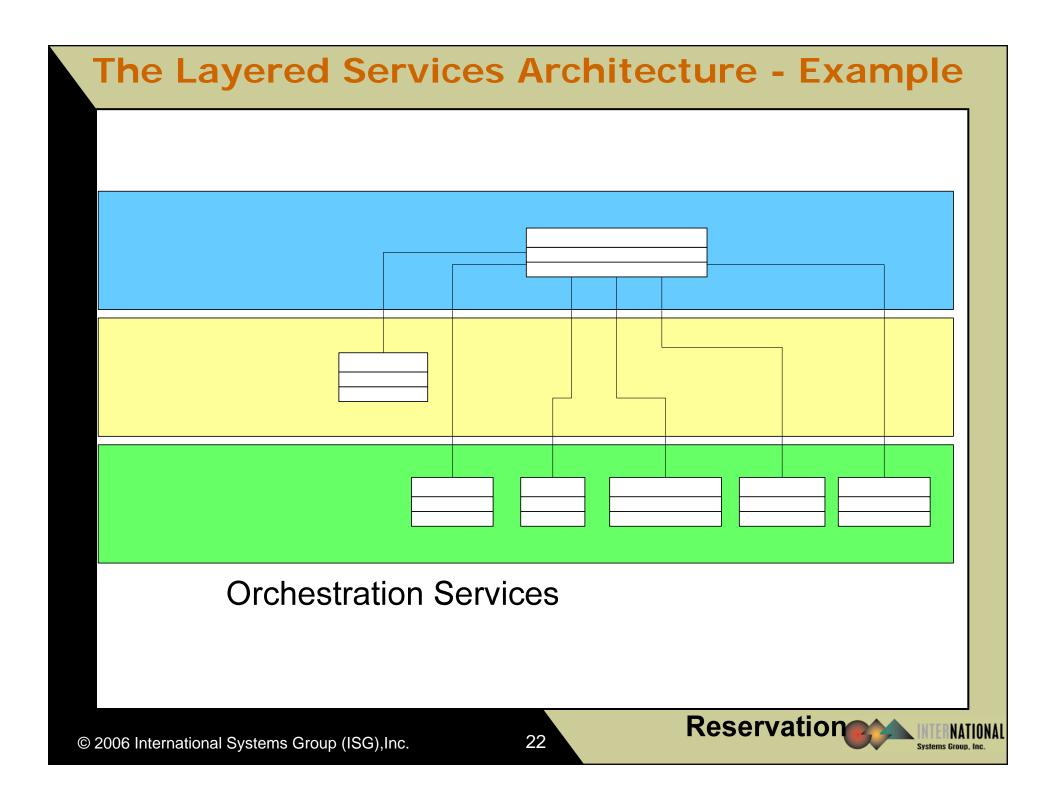

# **Carey's SOA Foundation Core**

- The SOA prescribes a multi-tier architecture foundation
  - Presentation tier
    - ▲ Subsidiaries, call center, customers, business partners
  - Business process tier
    - ▲ High-level, adaptable business logic
  - Core business logic tier (i.e. Application Services)
    - Reusable domain logic, independent of business processes
  - Infrastructure tier
    - Insulates applications from low-level system services
  - Back-office tier
    - ERP, legacy systems
- This foundation supports all business applications and a B2B Gateway



### **B2B Gateway Service Layers**




© 2006 International Systems Group (ISG),Inc.

Systems Groun, Inc

#### **The Layered Services Architecture - Example**

- A multitude of business partners interact with Carey through different B2B channels
- One partner is the Ground Travel Technology Team (GT3)
  - It provides an interface to the major computerized reservation systems
    - ▲ E.g. Sabre, Apollo and Worldspan
  - Reservation requests are being sent from GT3 to Carey

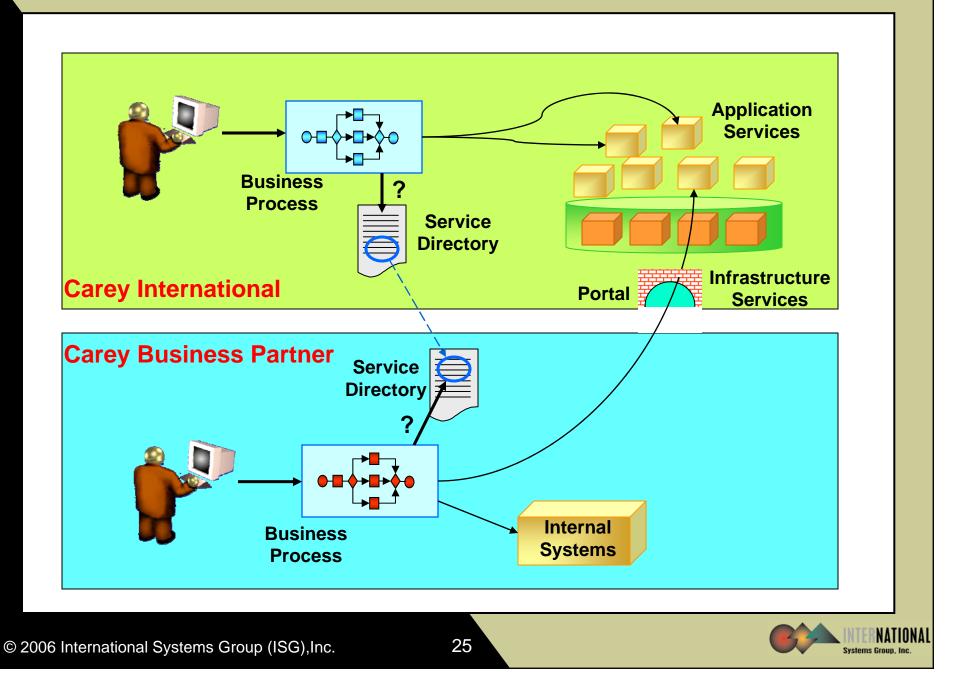




#### The Layered Services Architecture - Example

- The GT3 Reservation Request service model implements a business process where the GT3 system sends a request to Carey to create a new reservation, change or delete an existing reservation adhering to some well defined business rules
- An Orchestration Service manages the flow of business transactions between Carey and GT3
  - It also maps the reservation requests to activities that are internal to Carey
  - It uses common infrastructure and application services
    - Reservation, Logging, Security, Transformation, Notification, and Connectivity



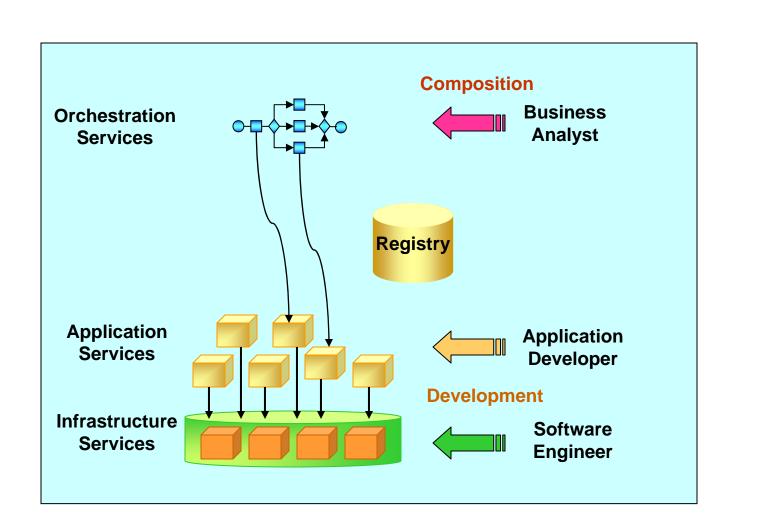



# How To Align Business And IT Through SOA

- Most companies face an increasing complexity of their enterprise application portfolios
  - Fulfilling business demands by adding new applications and packages
  - Building more connections between systems in order to achieve integration
  - Portfolio complexity slows down responsiveness of IT to business requests and in turn negatively affects business agility
- SOA allows to streamline application portfolios
  - Reduce redundancies
  - Simplify connectivity across internal and external enterprise boundaries through standardization



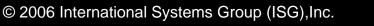
### **Service Reuse = Business Agility**




### **Service Reuse = Business Agility**

- Across a number of projects, more and more application services and infrastructure services are implemented
  - Build-out of service repository
- New business processes are implemented as new orchestration services
  - Potentially, additional application and infrastructure services need to be developed
    - Develop as you go approach
- Services implemented for use by internal processes can be reused for B2B
  - External partners do not utilize specific services, but typically connect to exposed orchestration services




# **Process Composition = Business Agility**





### **Process Composition = Business Agility**

- The SOA facilitates a separation of concerns
- Therefore the skill sets of the developers can be separated
  - Software Engineer
    - Implement infrastructure services that require experience with system software, e.g. persistence service, security service, scheduling service, reporting service
    - Develop design guidelines for application services that ensure non-functional requirements are met (e.g. clustering, fail-over, SLA)
  - Application Developer
    - Possess good business domain knowledge and develop application services that fulfill functional requirements
  - Business Analyst
    - Assemble application services into new business processes through the definition of orchestration services



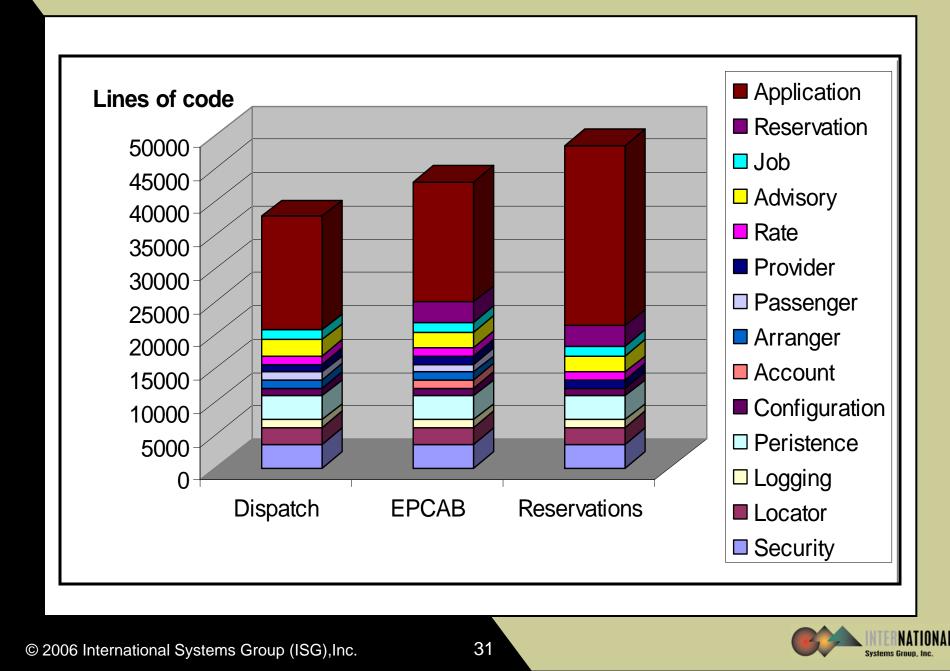


# **ROI Model For Software Development**

- The number of development hours saved by reusing a software component is the basis for calculating ROI
- Assumptions:

| Development cost per line of code                 | \$30    |
|---------------------------------------------------|---------|
| Development cost per line of <i>reusable</i> code | \$40    |
| Cost of reusing code per line                     | \$5     |
| Number of defects per 1,000 lines of code         | 1       |
| Cost of defect repair (post production)           | \$5,000 |

Based on Jeffrey Poulin, "Measuring Software Reuse: Principles, Practices, and Economic Models."




# **Example of ROI Calculations**

|                                  | Infrastructure | Application |             |              |
|----------------------------------|----------------|-------------|-------------|--------------|
| Initial Investment               | Services       | Services    |             |              |
| Lines of code built for reuse    | 12,000         | 15,000      |             |              |
| Cost                             | \$480,000      | \$600,000   |             |              |
| Total initial cost               |                | \$1,080,000 |             |              |
| Application projects             | Dispatch       | EPCAB       | Accumulated | Reservations |
| Total lines of code in project   | 40,000         | 45,000      | 85,000      | 50,000       |
| Reuse factor                     | 0.9            | 1.0         |             | 0.9          |
| Lines of code reused             | 22,950         | 27,000      | 49,950      | 22,950       |
| Lines of code built from scratch | 17,050         | 18,000      | 35,050      | 27,050       |
| Cost without reuse               | \$1,200,000    | \$1,350,000 | \$2,550,000 | \$1,500,000  |
| Cost with reuse                  | \$626,250      | \$675,000   | \$2,381,250 | \$926,250    |
| Savings                          | \$573,750      | \$675,000   | \$168,750   | \$573,750    |
| Defect repair cost without reuse | \$200,000      | \$225,000   | \$425,000   | \$250,000    |
| Defect repair cost with reuse    | \$85,250       | \$90,000    | \$175,250   | \$135,250    |
| Savings                          | \$114,750      | \$135,000   | \$249,750   | \$114,750    |
| Total savings                    | \$688,500      | \$810,000   | \$418,500   | \$688,500    |
| Savings percentage               |                |             | 16%         | 46%          |
| ROI                              |                |             | 39%         | 64%          |



### **Code Reuse**



#### From Chaos To Order - Delivering e-Business Integration Solutions



# **INTERNATIONAL** Systems Group, Inc.

250 West 57 Street, Suite 2532 New York, NY 10107

Tel: (212) 489-0400 Fax: (212) 489-1125

email: isg@isg-inc.com http://www.isg-inc.com

