
Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

Java Servlets and Enterprise Java Beans
In Enterprise Architectures: Friends or Foes

A Technical White Paper

By Max Dolgicer, Gerhard Bayer and Michael Bardash
International Systems Group (ISG), Inc
www.isg-inc.com

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

Introduction

The advent of mature, production-ready J2EE-based Application Servers has made a
strong impact on the way distributed applications are architected. As opposed to
previous (standard and non-standard) Middleware solutions, J2EE Application Server-
based architectures provide a number of significant advantages. The benefits of using
Application Servers as the fundamental application infrastructure are multiple and are
prominent both at the construction and production phases of the application lifecycle. In
contrast with previous-generation technologies, Application Servers provide a single
unified framework for addressing such disparate issues as application architecture,
application stability and integrity, design and development ergonomics, or administration
and support in a coherent, cohesive fashion. This framework incorporates management
of the component model, transactional integrity, persistence, remote invocation
mechanisms, security, and other essential distributed computing services, along with
unified configuration and diagnostics tools. In sum, Application Servers assure that e-
business applications will be more robust, more maintainable, more open, and finally
cheaper to construct and to own than a custom-built point solution.

This White Paper addresses an issue that ISG has witnessed repeatedly in many
projects during the past few years: as J2EE-based application servers like BEA's
WebLogic Server and IBM's WebSphere gain more widespread acceptance, should
Java servlets or Enterprise JavaBeans (EJBs) be used as a foundation for e-business
applications? Most of the early Web-based J2EE applications have been developed
using servlets as a base for two main reasons. First, the servlet model offers more
simplicity than EJBs and is easier for IT developers and managers to comprehend as
they get started with the technology. And second, the majority of the early projects are
focused on the so-called ''low-hanging fruit,'' or new e-business applications that focus
on presentation-centric applications and do not have high developer demands in terms
of complexity, scalability, availability, reliability and extensibility.

Meanwhile, the vendors state that the purpose of J2EE application servers is to support
high-end enterprise applications and to serve as the new, strategic middleware platform
for all application development and deployment. It is therefore important to understand
the difference in capabilities of servlets vs. EJBs so that the suitability of one approach
over the other can be determined given the requirements of a particular project, the
readiness of IT personnel, budgets and realistic time-to-market.

Popular Technologies

Both Java servlets and Enterprise JavaBeans are popular technologies, and both can
play a prominent role in enterprise architectures. Frequently, suppliers and users view
these technologies as competitive, especially for Web-centric applications. Indeed, on
the surface, servlets and EJBs can both be used to allow thin clients, such as browsers,

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

PDAs and the like, to access enterprise data. Two variations of a classical architecture
depicted in Figure 1 illustrate this contention.

Figure 1

The first diagram shows a thin client (such as a browser) accessing a servlet that is in
turn connected to a back-end system or database. The second diagram shows a client
accessing an EJB through a presentation gateway, for example an HTML Servlet.

Indeed, from the browser client perspective, there is not much difference between the
two technologies - both bridge between presentation and back-end functionality. And, in
many cases, servlets are considered to be a better choice because their coding and
deployment requires simpler skills and shorter times than those required for using EJBs,
which deal with a whole spectrum of complex issues, including many additional APIs
and rules. Of course, when an enterprise-strength architecture is in question, neither the
browser client perspective nor the simplification of the development process is a good
enough justification for the choice of technology.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

The fundamental difference between servlets and EJBs becomes apparent when such
essential design objectives as architectural robustness and business agility are brought
into focus. Then, issues like scalability, state management, flexibility of entity
relationships and richness of the cooperation metaphor start to play a prominent role in
the technology selection process. We intend to show why EJB-based architectures can
handle such concerns better than servlets-based technologies, and why a clear
understanding and recognition of this conclusion is required when new, complex
applications are being developed.

We may be giving readers the impression that we are biased toward EJBs as the
preferred vehicle for enterprise architectures. However, our view is that EJBs and
servlets are orthogonal technologies that, rather than competing directly, are mostly
complementary. To compare EJBs and servlets is not like comparing apples to apples.
It is not even like comparing apples to oranges - it is more like comparing apples and
oranges to the crates and barrels that are used to store and transport them. This
becomes obvious when the essential differences in intent, focus and, if you like, domain
philosophy of the two standards are investigated.

Servlets cater primarily to the delivery of dynamic content to browser-based clients.
They are narrowly focused on facilitating presentation, such as programmatic translation
and preparation of HTML, and on relief from handling lower-level details of HTTP. This
is the extent of the role servlets play in the framework of the J2EE standard.

On the other hand, the EJB standard was devised with the vision of a common pattern
for component architectures in mind. It deals principally with enabling the development
and deployment of a business application as a collection of components into a
framework of powerful and comprehensive infrastructure services (which can include
Java Database Connectivity (JDBC), Java Transactional Service (JTS)/ Java
Transaction API (JTA), Java Messaging Service (JMS) and the like). Rather than
prescribing any specific role (such as HTML rendering or HTTP encapsulation), the
Enterprise JavaBean component model is a mold for generic business components
whose exact specialization is left to the application designer to establish. In other words,
the servlets specification is a somewhat narrow standard specialized on the
presentation layer of applications, while the EJB standard is a broad enabling
technology.

This distinction becomes more apparent when directly comparing the characteristics of
EJBs and servlets to evaluate their respective applicability to enterprise architectures.

• A servlet is a faceless Java object. Beyond some features mandated by its base
class, it is amorphous and can have arbitrary internal composition. On the other
hand, by contract, an EJB is obliged to implement specific interfaces (such as the
home interface, activation and deactivation interfaces) and mandatory properties
(such as primary key, for example) that promptly tie it into the cooperation
environment (the container).

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

• A servlet has to implement a rigid set of methods with predefined signatures just
as Enterprise JavaBeans need to implement a set of methods imposed by the
EJB specification to fulfill the contract with the container. However, the EJB can
also define arbitrary methods that best suit its business semantics.

• Servlets have very thin support from the environment they are deployed into,
which is mostly limited to HTTP-related matters; EJBs enjoy a wide range of
powerful and comprehensive infrastructure services that are provided by the
container. Examples include the generation and handling of remote interfaces,
component factory services, component instance identification, distributed
transactions, automatic persistence for Entity Beans and declarative security.

• Basically, servlets are focused on one task: reacting to HTTP requests with
HTML responses in a stateless manner (in fact, state may be maintained via an
HttpSession object, but it is not comprehensive and requires explicit client
cooperation via session cookies). EJB behavior is defined at a higher level of
abstraction: EJB method invocation does not stipulate any syntax or semantics to
the invocation arguments or to the maintained state.

• By design, the aim of EJB is to segregate business functionality from
infrastructure services (such as life cycle management, transaction and security
contexts and persistence). Because servlets are not integrated with the J2EE
infrastructure services, they encourage application developers to deal with lower-
level J2EE APIs directly, and entangle business functionality with logic related to
infrastructure services.

• The servlets specification does not address enterprise concerns such as load
balancing and failover. On the contrary, inherent scalability and high availability
of services is a declared responsibility of the EJB container. (It should be noted
that some servlet engines do support clustering and load balancing. Curiously
enough, these are the engines that are embedded into EJB application servers
such as WebSphere and WebLogic).

In other words, servlets do one thing and do it well - they provide a shell for the
presentation layer of a Web-based application; EJB is a complex framework for
implementing widely dissimilar business functionality in a coherent and comprehensive
fashion.

Servlets expose; EJBs encapsulate

The other point of distinction between servlets and EJBs is that, in our experience, in
the majority of cases, servlets are used to expose business data, whereas EJBs are
used to encapsulate business functionality.

A classic use of a servlet would be to parse an HTTP request, access a database for
inquiry or update, and to compose an outgoing HTML reply. (A less common use of a
servlet would involve passing a serialized Java object between itself and a browser-side
applet. This scenario will be discussed later.) For example, a browser may submit a

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

request for an airline schedule, and the servlet will fetch the data from the database and
format the reply as an HTML table. Also, the browser may submit a filled form whose
elements will be stored by the servlet in a database table. In either case, it is the data,
not the behavior, the client is interested in.

Arguably, HTML data-level cooperation achieves a great level of independence
between the presentation at a client (in this case the browser) and the processing at the
server (the servlet). The interface between the client and the server is primarily
concerned with passing data; there is no API specific to any particular business
function. The browser client displays HTML returns unconditionally (subject to its
validity, of course). Thus, if the servlet implementation is changed to render richer
replies (such as embedding sound clips, for example), the client will benefit from this
extended business functionality automatically and transparently. However, if the servlet
is changed to display, for example, the latest cricket results instead of stock quotes, all
the same data will be unconditionally rendered by the client, much to the user's dismay.

In other words, the client's horizon extends all the way to the data and the servlet acts
merely as a rendering agent that enables the client to access the database (Figure 2).

Figure 2

Separating the presentation by the browser client and the processing in servlets
achieves a higher degree of independence compared to an EJB-based architecture
because it does not rely on the strong coupling that the interface of an EJB with rigid
business semantics imposes. However, this comes at the cost of compromising
business process integrity. This might not be a cause for concern for simple Web
browsing interactions, but from an enterprise-strength B2B/B2C perspective,
cohesiveness of the end-to-end business process flow must be protected. This objective
is best achieved by encapsulating business behavior in services, and service
granulation and exposition is precisely the domain of the EJB.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

With a typical EJB implementation, a client gains access to business functionality
through a presentation gateway, whereby the latter provides a rendering agent for
business functionality as opposed to data. Thus, a typical use of an EJB would be for
the client to remotely invoke the server-side service, which may or may not result in any
data being returned to the client, but which would definitely result in some meaningful
processing having taken place at the server side. This concept is illustrated in Figure 3.

Figure 3

Two-tier vs. three-plus tier

Another way to contrast servlets and EJBs is to assert that servlets by intent serve to
accommodate a classical two-tier application (where the presentation and data
access/business logic tiers are commingled within the servlet and the data store). On
the other hand, EJBs tend to three-tier or multitier complex cooperative environments.

Apparently, the flexibility of interpretation built into the servlets standard permits us to
break this data-only paradigm easily. Nothing prevents a servlet from being engineered
in such a way that it encapsulates a business service. Practically, this can be achieved
in a number of ways. For example, instead of only accessing a database, a servlet
implementation may invoke back-end functionality that has been written in Java via an
RMI call, or a servlet may exchange serialized Java objects with a browser-resident
applet. These and other design patterns that turn servlets into business logic capsules
are well known and quite popular. This approach leads to an architecture that looks like
the one in the picture below:

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

Figure 4

In practice, it has become a common architecture approach to allow servlets to benefit
from their amorphous ''anything goes'' internal structure - or, better yet, their lack of any
internal structure. Nothing prevents servlet implementations from internally integrating
with a variety of technologies like RMI/CORBA, JNDI, JMS, JTS/JTA and so on; just as
no out-of-the-box transparency exists for JDBC - a main vehicle to access databases
from within a servlet - the constructs within a servlet for all of the above technologies
have to be manually coded on a case-by-case basis. Nevertheless, the ability to embed
the whole spectrum of Java platform solutions on the client's behalf turns servlets into a
powerful middleware mechanism that extends the Java APIs to the Web.

It seems that both the servlets and the EJB technology are suitable platforms for an
enterprise application. Furthermore, they both seem suitable for presentation-centric
applications that do not require support for ''hard-core'' distributed services such as
transactions, load balancing, persistence, state management and message queuing,
among others. The use of servlets might be even more appropriate and certainly more
straightforward. However, even though it is possible to use servlets for truly distributed
applications, such use would be sub-optimal.

If an application is presentation-centric and does not require support for high-end
middleware services - distributed transactions, persistence, application-level load
balancing, state management and asynchronous messaging, among others - then
opting for heavy EJB usage is overkill. However, if an application requires at least a
partial list of such high-end middleware services, then EJBs become the only game in
town, assuming of course that the customer has selected or is about to select a J2EE-
based application server.

The following table compares and contrasts the two models and provides a more
detailed insight into how they stack up against each other using a set of objective
parameters. With Table 1 in mind, we can evaluate how well the two technologies
address enterprise concerns.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Application Topology

Servlets EJBs Comments

Web-centric model (client
connects via Web server only)

* Web-centric model (via
presentation gateway, e.g.,
HTML servlet)
* LAN-based model (clients
access services over LAN or
WAN via remote method
invocations without any
intermediary)
* Local (several tiers of
services collocated within a
single host, either in intra- or
inter-process fashion)

EJB permits for much more flexible
deployment topographies. Web
server is not a prerequisite.

Client Access

Servlets EJBs Comments

HTTP only

HTTP
* RMI and/or CORBA
* IIOP HTTP tunneling
* Value-added proprietary
protocols such as t3

HTTP is a stateless protocol
optimized for request-reply style
text transfer. An attempt to engage
it for generic use, such as may be
required by common cooperation
metaphors like stateful session,
involves significant overhead and
is not trivial to implement. On the
other hand, technologies like RMI
and CORBA are specifically
optimized for distributed computing
and easily account for a variety of
cooperation metaphors. HTTP
tunneling allows circumventing a
firewall in cases when direct client
access is precluded.

Transactional Support

Servlets EJBs Comments

* Transactions must be
coordinated manually through
integration with JTS.
* A client cannot easily pass
transaction context to a servlet.
* Attempt to allow a single
transaction to spawn multiple
servlet invocations is at least

* All transaction functions are
performed by the container
implicitly on behalf of an EJB,
including context propagation
and transaction demarcation.
However, the bean is not
precluded from taking full
control over transaction

Though a servlet can ultimately be
made as transactional as an EJB,
this attempt will involve significant
effort, both at design and
development times. EJB strongly
relieves these concerns.

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

non-trivial. management.
* Transaction rules are
declarative in nature and can
be changed at deployment
time.

Security

Servlets EJBs Comments

There is no security mechanism
readily available to servlets.
Rudimentary access security is
managed by the servlet engine
in a superficial manner (in most
cases, limited to differentiating
between trusted and untrusted
modes).

Comprehensive security
mechanism is managed by the
server. EJBs are instantiated
into security context and
service invocations are
authorized against access
control lists. Security definition
is declarative and defined at
deployment time.

In a Web-centric environment,
both standards benefit from
technologies like SSL and digital
certificates. But implementation of
these features is not mandated by
either standard and is left to the
discretion of specific products.
Most app servers and servlet
engines (especially those
embedded in app servers) support
an end-to-end Web security
model.

Persistence

Servlets EJBs Comments

No specific mechanism exists to
provide for servlet persistence,
though of course nothing
prevents a servlet from
implementing persistence on its
own by explicitly integrating with
JDBC.

EJB allows persisting objects
automatically. Support for this
comes from two angles.
Introspecting the bean can
automatically generate
database schemas. Container-
provided life-cycle
management automatically
passivates and activates
objects as needed and
provides for synchronization of
EJB state with the database.

Object Identification and Context Association

Servlets EJBs Comments

To identify a Servlet into context
(such as in the case of a session
context, for example) requires
explicit cooperation between the
client and the engine. Client-side
cookies are needed, and
additional coding is required on
the server side for session

EJB differentiates between
stateless and stateful objects.
While the former are created on
demand and do not outlive
single invocation, the latter are
uniquely identified by a primary
key, which permits
unambiguous context

EJB benefits from its implicit
integration with persistence and
naming services. Moreover, while
servlets leave the topic to the
user's discretion, EJB supplies
ground rules and a comprehensive
framework for identification of
EJBs.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

tracking. Integration with a
naming service is not possible at
the client side, and has to be
manually coded at the server
side.

identification.

Environment Access

Servlets EJBs Comments

Servlets have no access to the
runtime environment other than
regular Java mechanisms.

The EJB container manages
environment properties on
behalf of individual EJBs.
These can be defined at
deployment time, allowing for
greater deployment flexibility.

EJB provides better ergonomics of
the runtime environment
management, an essential part of
system administration.

Naming and Directory Services

Servlets EJBs Comments

No integration with JNDI except
when manually coded. No client-
side access to directory
services.

JNDI is fully integrated into the
server and the namespace is
managed transparently. EJB
provides naming context and
automates object registration.

The servlet client's inability to
discriminate its server object is a
limiting factor for component-
based architectures.

Life-cycle Management

Servlets EJBs Comments

Servlets are bound into the end-
user context only for the duration
of a single request. Servlet
instances are managed by the
server only to assure that the
configured number of instances
of a certain kind has been
pooled.

EJB instance life span can vary
from per-request instantiation
to the duration of a session, to
the persistence over many user
sessions. The persistence
mechanism allows bean-based
implementations to survive
catastrophic session failures
and container shutdowns.

State Management

Servlets EJBs Comments

Servlets do not have any
prescribed state management
policies.

The container cooperates with
the EJB to maintain the state.
In contrast to servlets, stateful
EJBs are required to implement
activation/passivation methods
to enable the container to

EJBs must comply with the state
management contract, which in
some scenarios may be perceived
as an unnecessary burden.
However, a well-articulated and
standardized state persistence

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

invoke them automatically to
persist the EJB's state at well-
defined points.

policy is a definite advantage to
application designers.

Resource Binding

Servlets EJBs Comments

The association of a servlet with
back-end resources must be
hard-coded.

Back-end resource access is
encapsulated in entity beans
that act like resource proxies to
the session-level objects.

To achieve the same level of
indirection and encapsulation as
available with EJB, servlets have
to manually provide for resource
management. This may be
prohibitively complex, especially
when resource management
needs to be integrated with
transactional and security
management.

Resource Sharing

Servlets EJBs Comments

Resource locking must be
manually implemented and
coordinated across servlet
instances. It is easy to break
resource sharing, as there is no
centralized enforcement
authority.

Resource sharing is managed
at the level of entity beans. The
container manages access to
the entity beans and
synchronizes access to them
according to the defined
sharing policy.

An EJB resource-sharing
mechanism creates an essential
foundation for resource load
balancing.

Relationship Multiplicity

Servlets EJBs Comments

The relationship between the
client and the servlet is one-to-
one only, for the duration of
single request.

The multiplicity of relationships
between client and server-side
objects is not defined. The
client may reference many
entity and/or session beans
simultaneously.

The relationship between client
and servlet is inherently damaged
by the limitations of the HTTP
protocol. However, a number of
work-around techniques may be
suggested, like having a single
servlet to multiplex all types of
client requests. The drawbacks of
such a scheme are obvious.

Database Integration

Servlets EJBs Comments

Servlets rely on JDBC facilities
to pool database connections.

The database connection pool
is managed by the server,

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

This pooling is managed
explicitly. SQL statements have
to be prepared manually.

according to the deployment
time policy. The container
manages object persistence.
SQL statements can be
generated automatically.

Invocation Arguments

Servlets EJBs Comments

Servlets require manual
marshalling of call arguments
from their HTML representation.
Analogously, return values have
to be embedded in HTML. The
Servlet API defines a number of
programmatic facilities that
assist in this task.

EJB invocations do not have
fixed signatures, and
arguments can be represented
as a structure of arbitrary
complexity, including, but not
limited to HTML strings.

Direct HTML rendering provided
by servlets is a strong advantage
for a browser-based client.

Threading Model

Servlets EJBs Comments

Servlets do not have any
inherent threading or
synchronization model.
Threading safety is left to the
discretion of the developer. A
single threading model is
devised specifically to ensure
that all calls are single-threaded.

Bean invocations run in
dedicated threads. The
container manages thread
synchronization. Thread
pooling is available for
performance optimization.

Metaphor

Servlets EJBs Comments

Servlets essentially support a
single metaphor: request-reply.
It is possible to identify requests
into a client session, but this
requires additional design and,
because of API limitations, is not
a comprehensive solution.

EJBs support a wide spectrum
of metaphors, including
request/reply in both stateless
and stateful manner,
asynchronous communication
through message-driven beans,
as well as session and
persistent session.

Chaining

Servlets EJBs Comments

Servlets can be chained to each
other to process client requests

An EJB that receives the client
request can fan out consequent

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

in a sequential manner. service invocations.

Table 1: Comparing Servlets and EJBs

Scalability

Both servlets and EJBs scale well. A number of features - such as server clustering, DB
connection pooling and location transparency - can facilitate scalability.

Each technology - or rather the products that implement the technologies - has been
built to support each of these concepts. However, servlet scalability is based mostly on
proprietary, vendor-created implementations of servlet pools and load-balancing
mechanisms, which are not stipulated by the servlet API. On the other hand, the EJB
architecture was designed from the beginning with a vision of addressing scalability.

The essential point of distinction here is that while servlets can scale at the server level,
EJBs can scale at the architecture level. Server-level scalability depends on specific
product features (which, no doubt, are almost universally supported nowadays by best-
of-breed products, and are thus sufficiently mature and comprehensive). Reliance on
product characteristics rather than on a robust, scalable architecture is a gamble
because, in some cases, loads can quickly outgrow product capacity and require
emergency re-architecting, which is a very expensive necessity.

Load balancing

Both EJB servers and servlet engines can provide mechanisms for load balancing that
include resource pooling, default dispatch mechanisms and entity clustering. While
benchmarking results of servlet engines vs. EJB application servers show more or less
compatible performance curves under heavy loads, a load-balanced EJB-based
application has a better guarantee of operational integrity.

There is no enforcement on an individual servlet design to mandate its guaranteed
incorporation into the distributed environment. As a result, load balancing has to be
accounted for at design time and thus becomes a condition to proper architecture
design and mature vision.

If load balancing is not taken into account, later attempts to introduce new resources
create the potential for resource sharing conflicts, breach of transactional guarantees, or
for sub-optimal performance caused by custom dispatch decisions or resource locking.
On the other hand, EJBs can supply an infrastructure with rich component management
capabilities that allow for the plug-and-play-style introduction of new resources.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

Business logic hosting

Because servlets have no impositions on their internal structure and therefore have to
manage all aspects of their existence explicitly, they attain only a mediocre level of
separation between business functionality and cooperation management (such as
database connection management calls, for example).

Business logic becomes intermingled with service calls to databases, name servers or
other infrastructure services. EJBs, by design, attain a good level of business
separation. Another limitation imposed on servlets' capability to host business logic is
their responsiveness obligations. Because they operate within an HTTP session, a
lengthy calculation - which may be necessitated by the business functionality - could
time out the user session.

Business agility

EJBs and servlets do not preclude design-level atomization of business services, so
application components can be replaced with other components transparently to the
overall architecture. However, because of its more flexible cooperation model, an EJB
provides a better vehicle to handle paradigm shifts.

For example, if a browser client must be replaced for some reason with a programmatic
agent (such as in the case of business process automation), servlets would not be able
to handle the change, while an EJB-based solution would require only modest and well-
confined modifications.

Integrity

An EJB application is homomorphic throughout: The same component model is utilized
for the component hierarchy, and all components are guaranteed to function under the
single umbrella of transactional and security services.

In contrast, a servlet-based application is free to agglomerate any technology without
restrictions, with the unavoidable risk of creating points of tension, and the consequent
need to account for technology blending at the analysis and architecture stages.

High availability

Both EJB application server and servlet engine products are designed to provide high
availability of services on the front end. This is achieved through clustering and failover

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

mechanisms that, though differing between implementations, still pursue the same goal
with more or less compatible effectiveness.

However, on the back end - at the level of business logic implementation - EJBs use
advanced component distribution techniques, such as object factories and smart
proxies that are not available to servlets.

Failover

In the case of EJB, a failover mechanism is a prescribed key functionality and is readily
available without any additional analysis or design effort. EJB failover is facilitated by
automatic persistence guarantees and by automatic failure detection. Servlets have no
equivalent mechanisms unless they are coded explicitly.

Deployment

Deployment is not a priority issue for servlets, but in the EJB worldview, deployment is
considered to be one of the key elements of application delivery.

For this purpose, EJBs define a whole methodology for defining deployment
characteristics that is supported by extensive APIs dealing with environment,
deployment descriptors and object properties. As a rule, deployment description is
declarative in nature, and the container is capable of adjusting runtime characteristics
(such as transaction guarantees) automatically.

Portability

Both servlets and EJBs are published standards that are backed up by reference
implementations and product compliance certification programs.

Despite that, vendors choose to introduce non-standard elements that, in their opinion,
enhance product functionality. Because of the huge difference in the breadth of
coverage and depth of penetration between servlets and EJBs, EJBs more easily fall
victim to such enhancements; so, applications developed over different EJB products
carry a greater risk of not being completely portable.

Management and administration

Runtime management and administration is a high priority for both EJBs and servlets,

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

and most products supply facilities for component start and stop, configuring operational
parameters, event logging and health monitoring.

EJBs supply a runtime environment that enables easier component monitoring and
management. Integrating a component into a management infrastructure is a seamless
activity with EJBs, whereas with servlets, if it is feasible at all, it requires the use of
product-specific APIs.

Development ergonomics

Servlets is a relatively simple standard that requires basic knowledge of Java and
HTML, at the most. EJBs, on the other hand, are complex and multifaceted, and require
an understanding of the J2EE platform, as well as proficiency with essential computer
science fundamentals (such as threading, transacting, object technologies and so on).
It is probably clear at this point to the development world that Enterprise JavaBeans are
better suited for enterprise application platforms than pure servlets are. We say ''pure''
servlets to underscore the fact that a complete (though, as explained, not necessarily
adequate for certain uses) architecture can be built exclusively upon servlets
supplemented with a mix of other Java technologies. In reality, however, there are
shades of gray between pure EJB and pure servlet solutions.

First, many servlet engines are embedded into app servers and share a common
implementation architecture with EJB servers. This allows vendors to merge the servlet
execution environment with the EJB server and thus bring servlet execution under the
same failover and load balance guarantees as EJBs.

Second, EJBs by definition declare compatibility with the other J2EE standards,
including Java Server Pages (JSP), a technology that aims for the same goals as
servlets (though admittedly in a different way). Moreover, JSP uses servlets as an
implementation vehicle, as JSPs are compiled and cached as servlets.

If we return to our initial assertion - that servlets are a narrowly specialized technology
that is excellent for delivering dynamic HTML content, and that EJBs are a wide,
generalized specification designed to componentize business functionality - it becomes
apparent that the class of enterprise-strength applications dealing with browser-based
clients can benefit from both servlet and EJB technologies simultaneously and without
inherent conflict. The basic architecture of an application utilizing both technologies is
depicted in Figure 5.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

Figure 5

Here, the browser client initiates an HTTP request that is served by a servlet. Rather
than implementing complex business logic, the servlet simply redirects the call, along
with parameters and perhaps some identification information, to a session bean. The
session bean implements the top-level process flow associated with the call, but
delegates specific activities to the specialized entity beans. These serve later as proxies
to various resources both inside and outside the application server. Developers should
notice that all of the business logic is under EJB container management and that it
benefits fully from the rich infrastructure services and container-side management.

It should be noted that this architecture has the inherent flexibility to support not only
browser-based clients, but also richer clients (in an intranet scenario). In addition, it can
be easily extended to make business functionality available through new interface
mechanisms - for example, Web services or whatever the next great idea might be.

In conclusion, it is easy to see that because servlets are good at exposing Java
interfaces to the Web, and EJB is the tool to enable good Java interfaces, there seems
to be a perfect match in using a lightweight servlet as a Web-exposing front end to EJB-
encapsulated business functionality.

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

Java Servlets and Enterprise Java Beans in Enterprise Architectures: Friends or Foes?

© 2002-2003 International Systems Group (ISG), Inc.
www.isg-inc.com

About the Authors:

Max Dolgicer (mdolgicer@isg-inc.com) is a Technical Director of International Systems
Group (ISG), Inc. (www.isg-inc.com), a consulting firm that specializes in development
and integration of enterprise applications using leading edge Middleware technologies.
Gerhard Bayer (gbayer@isg-inc.com) and Michael Bardash (mbardash@isg-inc.com)
are Senior Consultants with ISG, Inc.

mailto:mdolgicer@isg-inc.com
mailto:gbayer@isg-inc.com
mailto:mbardash@isg-inc.com

	�
	Java Servlets and Enterprise Java Beans
	In Enterprise Architectures: Friends or Foes

